Research Article

Generative AI and digital neocolonialism in global education: Towards an equitable framework

Matthew Nyaaba 1 2 * , Alyson Leigh Wright 1 , Gyu Lim Choi 1
More Detail
1 Department of Educational Theory and Practice, University of Georgia, Athens, GA, USA2 AI4STEM Education Center, University of Georgia, Athens, GA, USA* Corresponding Author
Journal of Digital Educational Technology, 6(1), April 2026, ep2608, https://doi.org/10.30935/jdet/17862
Submitted: 05 June 2024, Published: 04 February 2026
OPEN ACCESS   52 Views   16 Downloads
Download Full Text (PDF)

ABSTRACT

As generative artificial intelligence (GenAI) becomes increasingly embedded in education systems worldwide, urgent questions arise concerning whose knowledge these technologies elevate and whose they marginalize. This study adopts a twofold critical–constructive approach to examine GenAI’s role in reproducing epistemic hierarchies and to advance pathways toward more equitable use in education. Using a critical constructive qualitative design, we first conducted zero-shot prompt testing with ChatGPT-4 Turbo and Gemini 1.5 models across contexts in the Global North and Global South. The models responses were documented in real time and analyzed through a critical interpretive lens to surface patterns associated with digital neocolonialism. The critical phase of the study identifies six interconnected dimensions through which GenAI sustains Western dominance in educational contexts: Western curriculum ideologies, cultural imperialism, pedagogical control, language marginalization, racial and ethnic underrepresentation, and access inequity. For instance, when Gemini was asked to identify the seasons in the United States and Ghana, it returned the same four-season framework for both contexts, reflecting Western climatological assumptions. Across other prompts, GenAI outputs relied on stereotypical imagery, assumed Western-centered instructional resources, limited Indigenous and local language support, and disproportionately represented Western racial identities. In addition, subscription-based pricing models create structural barriers, as educators and institutions in much of the Global South face disproportionate costs due to currency differences. Building directly on these findings, the constructive phase advances two mitigation pathways for equitable GenAI in education. The first pathway targets AI design, emphasizing liberatory design methods, foresight by design, and the decentralization of GenAI development to strengthen local participation and data sovereignty. The second operates at the pedagogical level, advancing a human-centric prompt engineering model that empowers educators to contextualize prompts, critically interrogate outputs, and exercise pedagogical agency. These pathways position GenAI not merely as a technological tool, but as a site of ethical, and culturally responsive education.

CITATION (APA)

Nyaaba, M., Wright, A. L., & Choi, G. L. (2026). Generative AI and digital neocolonialism in global education: Towards an equitable framework. Journal of Digital Educational Technology, 6(1), ep2608. https://doi.org/10.30935/jdet/17862

REFERENCES

  1. Adam, T. (2019). Digital neocolonialism and massive open online courses (MOOCs): Colonial pasts and neoliberal futures. Learning, Media and Technology, 44(3), 365-380. https://doi.org/10.1080/17439884.2019.1640740
  2. Alexander, R. J. (2001). Border crossings: Towards a comparative pedagogy. Comparative Education, 37(4), 507-523. https://doi.org/10.1080/03050060120091292
  3. Ali, J. K. M., Shamsan, M. A. A., Hezam, T. A., & Mohammed, A. A. Q. (2023). Impact of ChatGPT on learning motivation: Teachers and students’ voices. Journal of English Studies in Arabia Felix, 2(1), 41–49. https://doi.org/10.56540/jesaf.v2i1.51
  4. Arora, A., Barrett, M., Lee, E., Oborn, E., & Prince, K. (2023). Risk and the future of AI: Algorithmic bias, data colonialism, and marginalization. Information and Organization, 33(3), Article 100478. https://doi.org/10.1016/j.infoandorg.2023.100478
  5. Athanassopoulos, S., Manoli, P., Gouvi, M., Lavidas, K., & Komis, V. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818-824. https://doi.org/10.25082/AMLER.2023.02.009
  6. Bai, L., Wu, Y., Li, G., Zhang, W., Zhang, H., & Su, J. (2023). AI-enabled organoids: Construction, analysis, and application. Bioactive Materials, 31, 525–548. https://doi.org/10.1016/j.bioactmat.2023.09.005
  7. Bentley, S. V., Naughtin, C. K., McGrath, M. J., Irons, J. L., & Cooper, P. S. (2024). The digital divide in action: How experiences of digital technology shape future relationships with artificial intelligence. AI and Ethics, 4, 901-915. https://doi.org/10.1007/s43681-024-00452-3
  8. Brand, D. J. (2023). Ensuring the ethical development and use of AI in local governance. Journal of Ethics & Legal Technologies, 5, 95-109.
  9. Buehring, J. H., & Liedtka, J. (2018). Embracing systematic futures thinking at the intersection of strategic planning, foresight and design. Journal of Innovation Management, 6, 134-152. https://doi.org/10.24840/2183-0606_006.003_0006
  10. Calzati, S. (2021). Decolonising “data colonialism”: Propositions for investigating the realpolitik of today’s networked ecology. Television & New Media, 22(8), 914-929. https://doi.org/10.1177/1527476420957267
  11. Carmel, E., & Paul, R. (2022). Peace and prosperity for the digital age? The colonial political economy of European AI governance. IEEE Technology and Society Magazine, 41, 94-104. https://doi.org/10.1109/mts.2022.3173340
  12. Cave, S., & Dihal, K. (2020). The whiteness of AI. Philosophy & Technology, 33(4), 685-703. https://doi.org/10.1007/s13347-020-00415-6
  13. Chaves, A. P., & Gerosa, M. A. (2021). How should my chatbot interact? A survey on social characteristics in human-chatbot interaction design. International Journal of Human-Computer Interaction, 37(8), 729-758. https://doi.org/10.1080/10447318.2020.1841438
  14. Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in large language models: A comprehensive review. Patterns, 6(6), Article 101260. https://doi.org/10.1016/j.patter.2025.101260
  15. Choi, G. W., Kim, S. H., Lee, D., & Moon, J. (2024). Utilizing generative AI for instructional design: Exploring strengths, weaknesses, opportunities, and threats. TechTrends, 68, 832-844. https://doi.org/10.1007/s11528-024-00967-w
  16. Chiu, T. K. F. (2021). A holistic approach to the design of artificial intelligence (AI) education for K-12 schools. TechTrends, 65, 796-807. https://doi.org/10.1007/s11528-021-00637-1
  17. Coleman, D. (2018). Digital colonialism: The 21st-century scramble for Africa through the extraction and control of user data and the limitations of data protection laws. Michigan Journal of Race & Law, 24, Article 417. https://doi.org/10.36643/mjrl.24.2.digital
  18. Couldry, N., & Mejias, U. A. (2018). Data colonialism: Rethinking big data’s relation to the contemporary subject. Television & New Media, 20(4), 336-349. https://doi.org/10.1177/1527476418796632
  19. Council of Europe. (2022). Council of Europe and artificial intelligence. Council of Europe. https://www.coe.int/en/web/artificial-intelligence
  20. Daft, R. L., & Lewin, A. Y. (2008). Perspective–Rigor and relevance in organization studies: Idea migration and academic journal evolution. Organization Science, 19(2), 177-183. https://doi.org/10.1287/orsc.1070.0346
  21. Denzin, N. K., Lincoln, Y. S., MacLure, M., Otterstad, A. M., Torrance, H., Cannella, G. S., Koro-Ljungberg, M., & McTier, T. (2017). Critical qualitative methodologies: Reconceptualizations and emergent construction. International Review of Qualitative Research, 10(4), 482-498. https://doi.org/10.1525/irqr.2017.10.4.482
  22. Ding, A.-C. E., Shi, L., Yang, H., & Choi, I. (2024). Enhancing teacher AI literacy and integration through different types of cases in teacher professional development. Computers and Education Open, 6, Article 100178. https://doi.org/10.1016/j.caeo.2024.100178
  23. Dong, X., Hong, Y., Chen, X., Li, W., Zhang, M., & Zhu, Q. (2018). Neural question generation with semantics of question type. In M. Zhang, V. Ng, D. Zhao, S. Li, & H. Zan (Eds.), Natural language processing and Chinese computing. NLPCC 2018. Lecture notes in computer science, vol. 11109 (pp. 213-223). Springer. https://doi.org/10.1007/978-3-319-99501-4_18
  24. Dorton, S. L., Ministero, L. M., Alaybek, B., & Bryant, D. J. (2023). Foresight for ethical AI. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1143907
  25. Ekin, S. (2023). Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices. TechRxiv. https://doi.org/10.36227/techrxiv.22683919.v1
  26. Emenike, N. W., & Plowright, D. (2017). Third culture indigenous kids: Neo-colonialism and student identities in Nigerian international schools. Journal of Research in International Education, 16(1), 3-17. https://doi.org/10.1177/1475240917692757
  27. Enein, G. F. R. A. (2023). Post-colonialism and the digital age. Journal of Namibian Studies: History, Politics and Culture, 38, 262-277.
  28. Enriquez, G., Gill, V., Campano, G., Flores, T. T., Jones, S., Leander, K. M., McKnight, L., & Price-Dennis, D. (2024). Generative AI and composing: An intergenerational conversation among literacy scholars. English Teaching: Practice & Critique, 23(1), 6-22. https://doi.org/10.1108/ETPC-08-2023-0104
  29. Fishman, D. A. (2004). Mainstreaming ethnicity: Horace Kallen, the strategy of transcendence, and cultural pluralism. Southern Journal of Communication, 69(2), 157-172. https://doi.org/10.1080/10417940409373286
  30. Furuhata, Y. (2022). Climatic media: Transpacific experiments in atmospheric control. Duke University Press. https://doi.org/10.2307/j.ctv28hj18z
  31. Gaskins, N. (2023). Interrogating algorithmic bias: From speculative fiction to liberatory design. TechTrends, 67(4), 417-425. https://doi.org/10.1007/s11528-022-00783-0
  32. Ge, X., Xu, C., Misaki, D., Markus, H. R., & Tsai, J. L. (2024). How culture shapes what people want from AI. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (pp. 1-15). ACM. https://doi.org/10.1145/3613904.3642660
  33. Gerbrandy, A., & Phoa, P. (2022). The power of big tech corporations as modern bigness and a vocabulary for shaping competition law as counter-power. In M. Bennett, H. Brouwer, & R. Claassen (Eds.), Wealth and power (pp. 166-185). Routledge. https://doi.org/10.4324/9781003173632-11
  34. Google. (2024). Gemini for students – get free Google AI Pro for a year. Retrieved March, 2024, from https://gemini.google/students/
  35. Google. (2024, February 15). Our next-generation model: Gemini 1.5. The Keyword: Google Blog. https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
  36. Gravett, W. H. (2022). Digital neocolonialism: The Chinese surveillance state in Africa. African Journal of International and Comparative Law, 30(1), 39-58. https://doi.org/10.3366/ajicl.2022.0393
  37. Hammer, R., & Park, T. M. (2021). The ghost in the algorithm: Racial colonial capitalism and the digital age. In A. I. R. White, & K. Q. King (Eds.), Global historical sociology of race and racism (Vol. 38, pp. 221-249). Emerald Publishing Limited. https://doi.org/10.1108/s0198-871920210000038011
  38. Hao, K. (2019). The future of AI research is in Africa. MIT Technology Review. https://www.technologyreview.com/2019/06/21/134820/ai-africa-machine-learning-ibm-google/
  39. Harrington, C. N., & Piper, A. M. (2018). Informing design through sociocultural values: Co-creation with low-income African-American older adults. In Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare (pp. 294-298). EAI. https://doi.org/10.1145/3240925.3240966
  40. Holland, A., & Ciachir, C. (2024). A qualitative study of students’ lived experience and perceptions of using ChatGPT: Immediacy, equity and integrity. Interactive Learning Environments, 33(1), 483-494. https://doi.org/10.1080/10494820.2024.2350655
  41. Ipek Z.-H., Gözüm, A.-C.-I., Papadakis, St., & Kalogi̇annaki̇s, M. (2023). Educational applications of ChatGPT, an AI system: A systematic review research. Educational Process, 12(3), 26-55, https://doi.org/10.22521/edupij.2023.123.2
  42. Issaka, C. A., Nyaaba, M., & Iddrisu, F. A. (2022). Attitudes and concerns of pre-service teachers about inclusive education enshrined in the new four-year basic education curriculum in Ghana. European Journal of Education and Pedagogy, 3(6), 89-94. https://doi.org/10.24018/ejedu.2022.3.1.239
  43. Jin, D., & Cao, J. (2018). “Perspective”–A new approach to serve our light community. Light: Science & Applications, 7, Article 89. https://doi.org/10.1038/s41377-018-0085-y
  44. Karakose, T., Demirkol, M., Aslan, N., Köse, H., & Yirci, R. (2023). A conversation with ChatGPT about the impact of the COVID-19 pandemic on education: Comparative review based on human-AI collaboration. Educational Process, 12(3), 7-25. https://doi.org/10.22521/edupij.2023.123.1
  45. Khazanchi, R., & Khazanchi, P. (2024). Generative AI to improve special education teacher preparation for inclusive classrooms. In M. Searson, E. Langran, & J. Trumble (Eds.), Exploring new horizons: Generative artificial intelligence and teacher education. AACE.
  46. Kincheloe, J. L., & Mclaren, P. (2011). Rethinking critical theory and qualitative research. In K. Hayes, S. R. Steinberg, & K. Tobin (Eds.), Key works in critical pedagogy (pp. 285-326). SensePublishers. https://doi.org/10.1007/978-94-6091-397-6_23
  47. Kitsara, I. (2022). Artificial intelligence and the digital divide: From an innovation perspective. In A. Bounfour (Ed.), Platforms and artificial intelligence: The next generation of competences (pp. 245-265). Springer. https://doi.org/10.1007/978-3-030-90192-9_12
  48. Kwet, M. (2019). Digital colonialism: South Africa’s education transformation in the shadow of Silicon Valley [PhD thesis, Rhodes University]. http://hdl.handle.net/10962/93767
  49. Ladson-Billings, G. (2014). Culturally relevant pedagogy 2.0: A.K.A. the remix. Harvard Educational Review, 84(1), 74-84. https://doi.org/10.17763/haer.84.1.p2rj131485484751
  50. Langmia, K., & Sani, M. H. (2023). Decolonizing the African mind in the digital space. In U. S. Akpan (Ed.), African media space and globalization (pp. 343-354). Palgrave Macmillan. https://doi.org/10.1007/978-3-031-35060-3_15
  51. Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G., Li, S., Liu, T., & Zhai, X. (2023). Artificial general intelligence (AGI) for education. arXiv. https://doi.org/10.48550/arXiv.2304.12479
  52. Lee, G.-G., & Zhai, X. (2024). Using ChatGPT for science learning: A study on pre-service teachers’ lesson planning. IEEE Transactions on Learning Technologies, 17, 1683-1700. https://doi.org/10.1109/TLT.2024.3401457
  53. Lee, S. C., & Kang, K. (2024). The effect of ‘integrated science logic & essay’ class using generative AI on technological, pedagogical, and content knowledge (TPACK) of pre-service science teachers. Journal of Curriculum Evaluation, 27, 133-155. https://doi.org/10.29221/jce.2024.27.1.133
  54. Li, B., Wang, C., Bonk, C. J., & Kou, X. (2024). Exploring inventions in self-directed language learning with generative AI: Implementations and perspectives of YouTube content creators. TechTrends, 68(4), 803-819. https://doi.org/10.1007/s11528-024-00960-3
  55. Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21, Article 100790. https://doi.org/10.1016/j.ijme.2023.100790
  56. Lynch, R., Young, J. C., Jowaisas, C., Sam, J., Boakye-Achampong, S., Garrido, M., & Rothschild, C. (2023). ‘The tears don’t give you funding’: Data neocolonialism in development in the Global South. Third World Quarterly, 44(5), 911-929. https://doi.org/10.1080/01436597.2023.2166482
  57. Menon, S. (2023). Postcolonial differentials in algorithmic bias: Challenging digital neo-colonialism in Africa. SCRIPTed: A Journal of Law, Technology & Society, 20, 383-399. https://doi.org/10.2218/scrip.20.2.2023.8980
  58. Mohamed, S., Png, M.-T., & Isaac, W. (2020). Decolonial AI: Decolonial theory as sociotechnical foresight for artificial intelligence. Philosophy & Technology, 33, 659-684. https://doi.org/10.1007/s13347-020-00405-8
  59. Mollick, E. R., & Mollick, L. (2023). Using AI to implement effective teaching strategies in classrooms: Five strategies, including prompts. SSRN. https://doi.org/10.2139/ssrn.4391243
  60. Nayır, F., & Sarı, T. (2026). Algorithmic bias in generative AI: Implications for critical pedagogy, inclusivity, and equity in education. In A. Bozkurt (Ed.), Rethinking education and agency in the age of human-generative AI interaction (pp. 149-182). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-1195-1.ch005
  61. Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York University Press.
  62. Nyaaba, M. (2023). Comparing human and AI’s (GPT-4 and Gemini) understanding of the nature of science. SSRN. https://doi.org/10.2139/ssrn.4661602
  63. Nyaaba, M., & Zhai, X. (2024). Generative AI professional development needs for teacher educators. Journal of AI, 8(1), 1-13. https://doi.org/10.61969/jai.1385915
  64. Nyaaba, M., & Zhai, X. (2025). Developing a theory-grounded AI tool for the generation of culturally responsive lesson plans. Computers and Education: Artificial Intelligence, 9, Article 100474. https://doi.org/10.1016/j.caeai.2025.100474
  65. Nyaaba, M., Kyeremeh, P., Majialuwe, E. K., Owusu-Fordjour, C., & Asebiga, E. (2024). Generative AI in academic research: A descriptive study on awareness, gender usage, and views among pre-service teachers. Journal of AI, 8(1), 45-60. https://doi.org/10.61969/jai.1400867
  66. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342
  67. OpenAI. (2024). ChatGPT pricing: Free, Plus, Pro, Business & Enterprise. Retrieved March, 2024, from https://chatgpt.com/pricing
  68. Owoahene Acheampong, K., & Nyaaba, M. (2024). Review of qualitative research in the era of generative artificial intelligence. SSRN. https://doi.org/10.2139/ssrn.4686920
  69. Ożegalska-Łukasik, N., & Łukasik, S. (2023). Culturally responsive artificial intelligence–Problems, challenges and solutions. Intercultural Relations, 7(2(14), 106-119. https://doi.org/10.12797/RM.02.2023.14.07
  70. Ragnedda, M. (2020). New digital inequalities: Algorithms divide. In M. Ragnedda (Ed.), Enhancing digital equity: Connecting the digital underclass (pp. 61-83). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-49079-9_4
  71. Rahman, A. (2020). Postcolonialism and the digital age. SAGE.
  72. Rasul, T., Nair, S. R., Kalendra, D., Robin, M., Santini, F. D. O., Ladeira, W., Sun, M., Day, I., Rather, A., & Heathcote, L. (2023). The role of ChatGPT in higher education: Benefits, challenges, and future research directions. Journal of Applied Learning and Teaching, 6(1). https://doi.org/10.37074/jalt.2023.6.1.29
  73. Sanusi, I. T., & Olaleye, S. A. (2022). An insight into cultural competence and ethics in K-12 artificial intelligence education. In Proceedings of the IEEE Global Engineering Education Conference (pp. 790-794). IEEE. https://doi.org/10.1109/educon52537.2022.9766818
  74. Sarı, T., Nayir, F., & Bozkurt, A. (2024). Reimagining education: Bridging artificial intelligence, transhumanism, and critical pedagogy. Journal of Educational Technology and Online Learning, 7, 102-115. https://doi.org/10.31681/jetol.1308022
  75. Share, J., Mamikonyan, T., & Lopez, E. (2019). Critical media literacy in teacher education, theory, and practice. In Oxford research encyclopedia of education. Oxford University Press. https://doi.org/10.1093/acrefore/9780190264093.013.1404
  76. Sok, S., & Heng, K. (2023). ChatGPT for education and research: A review of benefits and risks. SSRN. https://doi.org/10.2139/ssrn.4378735
  77. Stürmer, M., Nussbaumer, J., & Stöckli, P. (2021). Security implications of digitalization: The dangers of data colonialism and the way towards sustainable and sovereign management of environmental data. arXiv. https://doi.org/10.48550/arXiv.2107.01662
  78. UNESCO. (2021). Recommendation on the ethics of artificial intelligence. UNESCO. https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
  79. van Niekerk, D., Perez-Ortiz, M., Shawe-taylor, J., Orlic, D., Drobnjak, I., Kay, J., Siegel, N., Evans, K., Moorosi, N., Eliassi-Rad, T., Tanczer, L. M., Holmes, W., Deisenroth, M. P., Straw, I., Fasli, M., Adams, R., Oliver, N., Mladenic, D., & Aneja, U. (2024). Challenging systematic prejudices: An investigation into bias against women and girls in large language models. UNESCO. https://ircai.org/wp-content/uploads/2024/03/IRCAI_UNESCO_Report_Challenging_Systematic_Prejudices_web_March2024.pdf
  80. Zembylas, M. (2023). A decolonial approach to AI in higher education teaching and learning: Strategies for undoing the ethics of digital neocolonialism. Learning, Media and Technology, 48(1), 25-37. https://doi.org/10.1080/17439884.2021.2010094
  81. Zhai, X., Nyaaba, M., & Ma, W. (2025). Can generative AI and ChatGPT outperform humans on cognitive-demanding problem-solving tasks in science? Science & Education, 34, 649-670. https://doi.org/10.1007/s11191-024-00496-1
  82. Zhang, Y., & Cao, L. (2023). Exploring the potential presence of colonialism in the digital art field from a global perspective. Advances in Education, Humanities and Social Science Research, 8, 66-76. https://doi.org/10.56028/aehssr.8.1.66.2023